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This paper shows that optimal control techniques can be used to avoid some pattern formation in a Rayleigh-
Bénard problem with horizontal temperature gradient. Appropriate thermal boundary conditions determined by
these techniques lead to new strong controlled basic states with reduced pattern and for which the thermocon-
vective instability is avoided.
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Thermoconvective flows occur frequently in nature, in in-
dustrial applications or in daily life. For instance, thermocon-
vective instabilities are responsible for undesirable convec-
tive states in some industrial processes such as crystal
growth, laser welding or alloy manufacturing. In those pro-
cesses it is important to avoid convective patterns in order to
achieve homogeneous and resistant materials �1–4�. Optimal
control techniques can be useful for this. Classically, the
problem is stated as a fluid layer heated uniformly from be-
low �5–7�. A conductive state becomes unstable when tem-
perature gradients go beyond a certain threshold. The onset
of motion is caused by two different effects: gravity and
capillary forces. A more general approach considers thermo-
convective instabilities where a basic dynamic flow is im-
posed through nonzero horizontal temperature gradients
�8–10�. In this last problem the appearance of patterns is
accompanied by an increase of the enstrophy in the flow. We
look for the boundary conditions that minimize the enstrophy
of the flow by solving numerically the optimality conditions
found in Ref. �11�. We have proven that basic state patterns
disappear and some of the controlled states obtained are
highly stable in situations where enstrophy reduction is effi-
cient.

The physical setup considered consists of a horizontal
fluid layer in a rectangular container of width l �x coordinate�
and depth d �z coordinate�, ��= �0, l�� �0,d�. The top
boundary is open to the atmosphere; at the bottom the profile
is linear, with a temperature Tmax in the left lateral wall while
the right lateral wall is at Tmin and the environment at T0. We
define �T=Tmax−T0 and �Th=Tmax−Tmin.

The system evolves according to the momentum and mass
balance equations and to the energy conservation principle.
In the equations governing the system ux and uz are the com-
ponents of the velocity field u of the fluid, T is the tempera-
ture, p is the pressure, x= �x ,z� are the spatial coordinates
and t is the time. Magnitudes are expressed in dimensionless
form after rescaling in the following way: x�=x /d, t�
=�t /d2, u�=du /�, p�=d2p / ��0���, �= �T−T0� / �T. Here �
is the thermal diffusivity, � is the kinematic viscosity of the
liquid, and �0 is the mean density at ambient temperature T0.

The governing dimensionless steady state equations �the
primes in the corresponding fields have been dropped� are

� · u = 0, u · �� = �2� , �1�
�u · ��u = Pr�− �p + �2u + Ra�ez� . �2�

Here the Oberbeck-Bousinesq approximation has been used.
This consists in considering the following density depen-

dence on temperature �=�0�1−	��−T0��, where 	 is the
thermal expansion coefficient, only in the buoyant term. The
following dimensionless numbers have been introduced:

Pr =
�

�
, Ra =

g	
Td3

��
,

where g is the gravity constant, Pr is the Prandtl number, and
Ra the Rayleigh number representative of the buoyancy ef-
fect �the bifurcation parameter in the stability analysis�.

Moving on to the boundary conditions �bc�, the top
boundary is flat and open to the atmosphere, which implies
the following conditions on velocity:

uz = 0, �nux = 0 on z = 1. �3�

The remaining boundary conditions correspond to rigid walls
and are expressed as follows:

ux = uz = 0 on z = 0, x = 0, and x = � , �4�

where �= l /d is the aspect ratio. For temperature we take the
dimensionless form of Newton’s law for heat exchange at the
surface with a heat flux h

�n� = − Bi� + Bih, on z = 1, �5�

where Bi is the Biot number and h is the heat flux that serves
as the control function. In our notation h=0 for the uncon-
trolled states and h�0 is the function resulting from the
optimal control procedure in the controlled states. At the bot-
tom the following Dirichlet condition is imposed,

� = �1�x�, on z = 0, �6�

where �1�x� is a quasilinear function, i.e., it is a linear pro-
file �1�x�=1−x
Th / �
T�� for 0.05��x�0.95� and a sec-
ond order polynomial that matches the linear profile with the
boundaries satisfying ��n�1�x=0,�=0. In the lateral walls, in-
sulating boundary conditions are considered,

�n� = 0 on x = 0 and x = � . �7�

This system has been solved numerically by a Chebyshev
collocation method explained in Refs. �9,12,13�. This ap-
proximation is given by four fields ux�x ,z�, uz�x ,z�, p�x ,z�,
and ��x ,z� which are expanded in a truncated series of or-
thonormal Chebyshev polynomials. The numerical solutions
of this system �Eqs. �1� and �2� and boundary conditions
�3�–�7�� are the basic states that we name ub�x ,z�
= �ux

b�x ,z� ,uz
b�x ,z��, �b�x ,z�, and pb�x ,z�. As in Refs. �8–10�,

we have found two types of solutions �basic states� depend-
ing on the parameters: corotating rolls �linear flow�, which
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can be seen in Figs. 1�a� �isotherms� and 1�b� �velocity field�,
or a single roll �return flow� which can be seen in Figs. 1�c�
�isotherms� and 1�d� �velocity field�. We have used the ter-
minology “linear” and “return flow” introduced in Ref. �8�.
We have a return flow when along the vertical axis there are
changes in the sign of the temperature gradient. When the
basic state does not present this feature we say that it is a
linear flow.

We have studied the linear stability of these basic states
by perturbating them with a vector field

ux�x,z� = ux
b�x,z� + ūx�x,z�e
t, �8�

and similarly for uz, �, and p. Expression �8� and similar
expressions for the rest of the fields are substituted in the
basic equations �1� and �2� and boundary conditions. The
resulting system is linearized and an eigenvalue problem in 

is obtained:

� · ū = 0, ub · ��̄ + ū · ��b − �2�̄ = − 
�̄ , �9�
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FIG. 1. �a� Isotherms for a linear flow basic state. The param-
eters are Bi=0.3, �=11.76, Ra=3200, and 
Th /
T=0.08; �b� ve-
locity field of the same basic state corresponding to corotating rolls;
�c� isotherms for a return flow basic state. The parameters are Bi
=0.3, �=6, Ra=1125, and 
Th /
T=1; �d� velocity field of the
same basic state corresponding to a single roll.
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FIG. 2. �a� Isotherms for the growing perturbation after the bi-
furcation. The parameters are Bi=0.3, �=11.76, Ra=3245, and

Th /
T=0.08; �b� velocity field of the same growing perturbation.
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FIG. 3. Enstrophy �E� as a function of the Rayleigh number Ra in the linear flow case. Dashed vertical line: critical Rayleigh number.
The parameters are Bi=0.3, �=11.76, and 
Th /
T=0.08. Velocity fields plots for Ra=2000, 3200, and 3300 are included.
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�ub · ��ū + �ū · ��ub − Pr�− �p̄ + �2ū + Ra�̄ez� = − 
ū ,

�10�

with the corresponding boundary conditions.
The system is solved with the same Chebyshev-

collocation method as the one used to obtain the basic states
�9,13�. In the case of the corotating rolls, the bifurcations are
stationary and the critical Rayleigh number for Bi=0.3, �
=11.76 and �Th / �T=0.08, for instance, is Rac=3245. The
growing perturbation after the bifurcation can be seen in Fig.
2. The new structure of the flow will be a linear combination
of the basic state and the growing perturbation. The return
flow state is stable for any value of Ra, i.e., there is no
bifurcation. Another main point, apart from reducing pat-
terns, is to study the effect of control over the instability. So
we will concentrate on the corotating rolls case hereafter.

Optimal control problem. If we consider the measure of
vorticity ��=��u�, E�u�=�����u�2d� which is called
enstrophy, we observe in a plot of enstrophy depending on
the Rayleigh number �Fig. 3� that the appearance of patterns
is accompanied by an increase of the enstrophy in the flow.
This suggests that by reducing the enstrophy we could obtain
states for which patterns will also be reduced. For this reason
we look for the control function h on the top boundary which
minimizes the enstrophy of the flow. We state the optimal
control problem as in Ref. �11�.

Minimize J�u ,� ,h�= 1
2�����u�2d�+ �

2�0
�h2dx, subject

to the state

� · u = 0, u · �� − �2� = 0, �11�

�u · ��u + Pr��p − �2u − Ra�ez� = 0, �12�

with boundary conditions as follows:

ux = uz = 0, �n� = 0 on x = 0 and x = � , �13�

ux = uz = 0, � − �1 = 0 on z = 0, �14�

uz = 0, �nux = 0, �n� + Bi� − Bih = 0 on z = 1,

�15�

where h is a temperature control using radiational heating or
cooling. In the cost functional J, the term E�u�=����
�u�2d� is the enstrophy previously introduced, the term
�0

�h2dx is the measure of the magnitude of the control and the
penalizing parameter � adjusts the size of the terms in the
cost.

Reference �11� proves the existence of solutions for the
optimal control problem and provides the optimality condi-
tions. These conditions include the above equations and
boundary conditions together with the new equations and
boundary conditions for the control h�x� and the auxiliary
fields ��x ,z�= ��x�x ,z� ,�z�x ,z��, ��x ,z� and ��x ,z�:

� · � = 0, − u · �� = �2� + Pr Ra�ez, �16�

− �u · ��� + ��u�t� = Pr�− �� + �2�� − � � � − ��x��xu�� ,

�17�

�x = �z = 0, �n� = 0 on x = 0 and x = � , �18�

�x = �z = 0, � = 0 on z = 0, �19�

�z = 0, �n�x = 0, �n� = − Bi�, Bi� − �h = 0 on z = 1.

�20�

This optimality system has been solved numerically by a
Chebyshev collocation method �9,12,13�. The approximation
is given by nine fields ux, uz, p, �, �x, �z, �, �, and h, which
are expanded in a truncated series of orthonormal Chebyshev
polynomials. The convergence of the numerical method is
tested by comparing the differences in the value of the criti-
cal Rayleigh number for different orders of expansions in

TABLE I. Critical Rayleigh number for the controlled solutions
at Bi=0.3, �=11.76, and 
Th /
T=0.08 at �=0.001 for different
order expansions in N and M.

M =13 M =15 M =17 M =19 M =21

N=25 2938.78 2934.78 2932.09 2930.19 2928.92
N=27 2958.32 2959.00 2959.49 2959.78 2959.98
N=33 2960.17 2960.46 2960.76 2960.95 2961.15
N=37 2956.26 2953.33 2951.48 2950.2 2949.37
N=39 2959.05 2953.33 2956.75 2956.26 2955.87
N=41 2955.37 2954.93 2954.68 2954.56 2954.40
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FIG. 4. �a� Isotherms in the controlled linear flow case for �
=5�10−4; �b� velocity field in the same case. The parameters are
Bi=0.3, �=11.76, Ra=3200, and 
Th /
T=0.08.
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FIG. 5. Control function h in the case Bi=0.3, �=11.76, Ra
=3200, 
Th /
T=0.08 for different values of �.
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Chebyshev polynomials. These values are shown in Table I
for several consecutive expansions, varying the number of
polynomials taken in the x �N� and z �M� coordinates. Con-
vergence is attained, with a relative degree of precision, for
Rac in the region of 10−4. We can see that if M is increased
there will be no significant difference between successive
expansions. Convergence is satisfactory from N=37 and M
=13, and these are the orders used in the numerical compu-
tations throughout the paper.

These optimally controlled solutions depend on the � pa-
rameter �the penalizing parameter adjusting the size of the
terms in the cost functional�, as does the reduction in enstro-
phy. The controlled state for �=5�10−4 corresponding to a
corotating roll state �see Figs. 1�a� and 1�b�� can be seen in
Figs. 4�a� �isotherms� and 4�b� �velocity field�. The corotat-
ing rolls have disappeared �the pattern is reduced� and the
new controlled state consists of two rolls, one over the other,
with a low velocity �O�10−2�� �see Fig. 4�b��. Now the en-
strophy takes the value 0.06, while for the uncontrolled coro-
tating rolls the value is E=10.69. Thus, there is a consider-
able reduction of enstrophy in the controlled states. Figure 5
shows the control functions h for different values of � for the
linear flow case. The control function h has an increasing
linear profile from the hotter to the colder lateral wall, caus-
ing heating of the colder part in the fluid. As � increases, the
control function tends to be zero, i.e., the control function
tends to have no effect and the controlled state tends towards
an uncontrolled state, as it should be. But for small �, the
control is significant and more effective. Figure 6 shows that

for large values of the penalizing parameter � the enstrophy
of the controlled states tends to the enstrophy of the uncon-
trolled states, while for small values of � the controlled states
have a very small enstrophy. We have seen until now how
thermal control through boundaries used to reduce the en-
strophy in the flow led to controlled basic states with a clear
reduction of patterns �compare Figs. 1�b� and 4�b��.

Regarding to the linear stability analysis of the controlled
basic states, the critical Rayleigh numbers depending on �
can be seen in Fig. 7. The bifurcations are stationary. The
critical Rac for the uncontrolled state is plotted as a horizon-
tal dashed line. This calculation identifies two main charac-
teristics. First, when � increases, the control has no effect, as
noted above, and therefore the threshold tends towards 3245,
which is the threshold for the uncontrolled case. Second, for
small values of � �4.5�10−4���6�10−4� the threshold is
larger than 3245, and there are controlled states which are
very strong and never become unstable even if Ra is consid-
erably increased ���4.5�10−4�. Then, we have found heat
fluxes h �those obtained for ��4.5�10−4� such that if we
consider them in the Biot boundary condition �5�, the corre-
sponding controlled basic states reduce pattern and they are
stable for all Ra, i.e., the instability is avoided.
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FIG. 6. Enstrophy �E� as a function of the penalizing parameter
�. The parameters are Bi=0.3, �=11.76, Ra=3200, and 
Th /
T
=0.08.
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FIG. 7. Solid line: critical Rayleigh number for the controlled
states for different values of the penalizing parameter �. Dashed
horizontal line: critical Rayleigh number for the uncontrolled state.
Dotted vertical line: asymptotic value of � limit of bifurcation zone.
The values of the parameters are Bi=0.3, �=11.76, and 
Th /
T
=0.08.
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